Innovations in Structural Strengthening – Blast, Impact and Seismic Strengthening.

Where blast impact and seismic loads are been considered a range of materials may be suitable. The increase ductility and toughness of fibres such as aramid and glass fibres has seen them used along with carbon fibre for these types of projects.   Some strengthening projects utilise the ease of installation of a plate as discussed previously, but more often than not the use of fabric, bonded in-situ, provides the required solution.

Blast and seismic strengthening are generally a small part of the market place with limited design and practical guidance. However, post September 11, interest in protecting strategic buildings against terrorist attack has been increasing. In many situations the strengthening not only provides an improved resistance to collapse, but also helps to reduce the fragmentation, which can be so dangerous for the users of a building. Seismic strengthening in the UK is at present limited to the nuclear industry. In areas of the world where seismic activity occurs, strengthening against seismic loads becomes the major market for composite materials within the construction industry.

Strengthening columns for vehicle impact loading using composite materials has been common practise within the UK for several years. The installation can be carried out using either the wet or dry application method. The wet method involves saturating the fabric with resin prior to applying it to the concrete surface. The dry method involves applying adhesive to the concrete surface and placing the fabric into the adhesive. Multiple layers of fabric can be applied using either method of application. Due to the unidirectional nature of the majority of fabrics layers can be applied in different orientations to provide strength in different directions when required. Multi direction materials are available, but are often uneconomic.

In late 2002 the Highways Agency published Bridge Directive, BD84/02 Strengthening of Concrete Bridge Supports Using Fibre Reinforced Polymers. This provides design and specification advice on the use of fabric materials in strengthening of columns against impact.

The SikaWrap range of composite fabrics and the Sikadur range of epoxy adhesives have been developed for both dry and wet application methods. The SikaWrap range of fabrics includes carbon, aramid and glass fibre materials.

The composite strengthening is often used in conjunction with additional reinforced concrete elements to improve fixation of columns at supports.

On a project completed in Bristol on the A38 Patchway Viaduct, SikaWrap 300A aramid wrapping system was installed using the dry method of application in August 2003. As part of the installation trial bands were installed above the area where strengthening was required. Defects were deliberately installed in these bands to trial the use of transient pulse thermography in detecting such defects. The system used by the BRE uses short bursts of powerful light to raise the surface temperature of the strengthening and then uses a sensitive infrared camera to monitor the cooling of the surface. Differences in how the surface cools show up possible defects within the layers of the fabric.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s